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Abstract
Background. Transforming growth factor-β1 (TGF-β1)
and the macrophage inhibitory factor receptor CD74 link
the metabolic disorder with tissue injury in diabetic
nephropathy. Fabry disease is an X-linked lysosomal
glycosphingolipid storage disorder resulting from a defi-
cient activity of α-galactosidase A that leads to proteinuric
renal injury. However, the link between the metabolic
abnormality and renal injury is poorly characterized.
Globotriaosylsphingosine (lyso-Gb3) was recently identi-
fied as a bioactive molecule accumulating in Fabry disease.
We hypothesized that lyso-Gb3 could modulate the release
of secondary mediators of injury in glomerular podocytes
and that recently described nephroprotective actions of
vitamin D receptor activation in diabetic nephropathy may
apply to lyso-Gb3.
Methods. Real time RT-PCR, ELISA and Western blot
were used to study the biological activity of lyso-Gb3 in
cultured human podocytes and potential modulation by
vitamin D receptor activation.
Results. In human podocytes, lyso-Gb3 dose and time de-
pendently increased the expression of TGF-β1, extracel-
lular matrix proteins (fibronectin and type IV collagen) and
CD74. TGF-β1 mediated lyso-Gb3 effects on extracellular
matrix production. Vitamin D receptor activation with
paricalcitol or calcitriol prevented the increase in TGF-
β1, CD74 and extracellular matrix induced by lyso-Gb3.
Conclusions. Lyso-Gb3 may have a role in glomerular
injury in Fabry disease by promoting the release of second-
ary mediators of glomerular injury common to diabetic
nephropathy. These effects are prevented by paricalcitol,
raising the issue of vitaminD receptor activation as potential
adjunctive therapy in Fabry nephropathy.
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Introduction

Fabry disease is an X-linked storage disorder resulting from
a deficient activity of α-galactosidase A [1,2]. As a conse-
quence of the enzymatic deficiency, there is a progressive
accumulation of glycosphingolipids, predominantly of the
enzyme substrate globotriaosylceramide (Gb3), in lyso-
somes, other cellular compartments and the extracellular
space [3]. Initially, reversible changes, suchasglycosphingo-
lipid accumulation, are followed by irreversible tissue injury
and, ultimately, by organ failure which may be life-threaten-
ing when affecting the kidney, heart or central nervous sys-
tem [4,5]. However, the pathogenic link between the
metabolic abnormality (glycosphingolipid accumulation)
and tissue injury is unclear.

In Fabry nephropathy, glycolipids deposit in glomerular
(particularly podocytes), tubular and vascular cells leading
to glomerulosclerosis, tubular atrophy, interstitial fibrosis
and inflammation [6,7]. Fabry nephropathy resembles
diabetic nephropathy (DN) in the metabolic origin and
in the clinical course characterized by increasing protein-
uria and progression of renal dysfunction at a similar rate
of loss of glomerular filtration rate of −10 to −12 mL/min/
year [8–11]. Early enzyme replacement therapy (ERT) sta-
bilizes renal function, but ERT does not influence protein-
uria, and may not prevent progressive renal deterioration in
patients with glomerulosclerosis or proteinuria >1 g/day
[4,12]. As it is the case for DN, Fabry nephropathy appears
to have a point of no return, beyond which the metabolic
abnormality may no longer be the main driver of progres-
sion [4,13]. At this stage, secondary mediators of renal in-
jury take centre stage, and a better knowledge of these
mediators may provide additional therapeutic tools to slow
progression of more advanced cases of renal injury. In this
regard, and based on their effectiveness in DN, adjunctive
antiproteinuric therapywith angiotensin-converting enzyme
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inhibitors (ACEI) or angiotensin receptor blockers (ARBs)
has been advocated, and a small, open-label trial pro-
vided encouraging results [4,14]. Paricalcitol, a selective
vitamin D receptor (VDR) activator, has been reported to
reduce proteinuria in DN but has not been tested in Fabry
nephropathy [15,16]. However, the secondary mediators
leading to tissue injury in Fabry disease are poorly under-
stood. Similar to diabetes, the initial metabolic derangement
may promote the production of secondary mediators of in-

jury that lead to fibrosis, parenchymal cell loss and inflam-
mation. Although Gb3 accumulation is widespread, serum
Gb3 or Gb3 deposits do not necessarily correlate with clin-
ical manifestation [17]. Recently, high serum concentrations
of a biologically active lipid metabolite, globotriaosylsphin-
gosine (lyso-Gb3), have been observed in Fabry patients
[17]. Lyso-Gb3 promoted vascular smooth muscle cell pro-
liferation, suggesting a role in the pathogenesis of Fabry
disease. However, it is unknown whether lyso-Gb3 has
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Fig. 1. Lyso-Gb3 increases TGF-β1 and CD74 expression in human podocytes. (A) Time-dependent increase of TGF-β1 mRNA in cultured human
podocytes after 100 nM lyso-Gb3 incubation and (B) dose–response increase of TGF-β1 mRNA after a 24-h exposure to lyso-Gb3. Real-time RT–PCR.
Mean±SD of three independent experiments. *P<0.002 vs. control. (C) Supernatant TGF-β1 protein ELISA at 24 h. *P<0.01 vs. control. (D) Time-
dependent increase in CD74 mRNA expression in human podocytes treated with 100 nM lyso-Gb3 for indicated time periods. Real-time RT–PCR.
Mean±SD of four independent experiments. *P<0.01 vs. control. (E) Dose–response increase in CD74 mRNA at 24 h after stimulation with lyso-Gb3
at different concentrations. Real-time RT–PCR. Mean±SD of three independent experiments. *P<0.01 vs. control. (F) Increase in CD74 protein
expression in cells treated with 100 nM lyso-Gb3 for 24 h. Representative western blot and densitometric quantification. Mean±SD of three
independent experiments. *P<0.005 vs. control.
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biological actions on podocytes, which are the key cells in
proteinuric kidney diseases, including DN [18].

We hypothesized that lyso-Gb3 may have biological
actions on cultured podocytes, leading to the release of
secondary mediators that have been previously implicated
in the pathogenesis of other metabolic nephropathies,
such as DN. Thus, we have explored the modulation by
lyso-Gb3 of classical mediators of DN, such as trans-
forming growth factor-β1 (TGF-β1) [11,19] and of novel
mediators identified by unbiased genomic profiling, such
as CD74 [20], and have explored novel potential thera-
peutic approaches, such as VDR activation.

Materials and methods

Cell culture and reagents

Human podocytes are an immortalized cell line transfected with a
temperature-sensitive SV40 gene construct and a gene encoding the cata-
lytic domain of human telomerase [20,21]. At a permissive temperature of
33°C, the cells remain in an undifferentiated proliferative state and divide.
Raising the temperature to 37°C results in growth arrest and differenti-
ation to the parental podocyte phenotype. Undifferentiated podocyte cul-
tures were maintained at 33°C in RPMI 1640 medium with penicillin,
streptomycin, insulin–transferrin–selenite (ITS) and 10% FCS. Once cells
reached 70–80% confluence, they were fully differentiated by culture at
37°C for at least 14 days [20].

Cells were cultured in serum-free media 24 h prior to the addition of
the stimuli and throughout the experiment. Inhibitors were added 1 h
before lyso-Gb3 (Sigma, St. Louis, MO, USA): paricalcitol (10−7M,
Abbot), calcitriol (10−7M, Sigma), neutralizing anti-TGF-β1 (10 μg/mL,
R&D systems) or TGF-β1 superfamily type I activin receptor-like kinase
receptor (ALK-5) inhibitor (TRI, SB431542, 10−6M, Calbiochem) or
vehicle. Inhibitors were not toxic (cell viability assay MTS-PMS, Promega
or morphological assessment of apoptosis) and, in preliminary experi-
ments, were shown to be active at the doses used [22,23].

Protein studies

For western blot, cells were homogenized in lysis buffer and separated by
10% or 12% SDS–PAGE under reducing conditions [20]. Primary anti-
bodies were goat polyclonal anti-CD74 (1:500), rabbit polyclonal anti-
collagen IV (1:500) (Santa Cruz) and mouse monoclonal anti-fibronectin
(1:1000, Chemicom). Secondary antibodies were appropriate horseradish
peroxidase-conjugated antibodies (1:2000, Amersham, Aylesbury, UK).
Blots were then probed with mouse monoclonal anti-α-tubulin (1:2000,
Sigma), and levels of expression were corrected for minor differences in
loading.

TGF-β1 in cell culture supernatant was measured by ELISA (BD
Biosciences, San Jose, CA, USA) [22].

Real-time reverse transcription–polymerase chain reaction

RNA was isolated by Trizol (Invitrogen, Paisley, UK) [20]. One micro-
gram of RNAwas reverse-transcribed with High Capacity cDNA Archive
Kit (Applied Biosystems, Foster City, CA, USA). Real-time PCR reac-
tions were performed on an ABI Prism 7500 sequence detection PCR
system (Applied Biosystems) according to manufacturer's protocol using
the delta delta Ct method [20]. Expression levels are given as ratios to
GAPDH. Pre-developed primer and probe assays (PDAR) were obtained
for human GAPDH, VDR, CD74, collagen IV, fibronectin and TGF-β1
from Applied Biosystems.

Statistical analysis

Data are mean ± standard deviation. Mann–Whitney, two-sided t-test
or one-way ANOVA was applied to detect differences between groups.
A P-value <0.05 was considered statistically significant.

Results

Lyso-Gb3 increases podocyte TGF-β1, CD74 and
extracellular matrix (ECM) protein expression

TGF-β1 is a key mediator of glomerulosclerosis and inter-
stitial fibrosis released in response to high glucose [24].
CD74 is a candidate receptor mediator of podocyte injury
in DN that is expressed in response to the metabolic
derangement (high-glucose milieu) [20]. In podocytes,
lyso-Gb3 increased TGF-β1 and CD74 mRNA levels in a
time- (Figure 1A and D) and dose-dependent manner
(Figure 1B and E). TGF-β1 protein was increased in the
supernatants and CD74 protein in whole-cell extracts from
stimulated cells (Figure 1C and F). Lyso-Gb3 increased
the mRNA (Figure 2A and B) and protein (Figures 2C,
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Fig. 2. Lyso-Gb3 induces extracellular matrix protein expression in
cultured human podocytes. (A) Time-course of fibronectin and type IV
collagen mRNA expression in human podocytes treated with 100 nM
lyso-Gb3. Mean±SD of four independent experiments. *P<0.004 vs.
control. (B) Dose–response after a 24-h stimulation with lyso-Gb3.
Real-time RT–PCR. Mean±SD of four independent experiments. *P<
0.009 vs. control. (C) Cells were stimulated with 100 nM lyso-Gb3 for
24 h. Densitometric quantification of western blot. Mean±SD of three
independent experiments. *P<0.01 vs. control, **P<0.04 vs. control.
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and 3B and D) expression of ECM proteins like fibronec-
tin and type IV collagen. The increase in ECM-coding
mRNA levels was time- (Figure 2A) and dose-dependent
(Figure 2B).

TGF-β1 mediates lyso-Gb3 regulation of ECM
components

TGF-β1 promotes synthesis of ECM in renal cells, includ-
ing glomerular podocytes [22,25]. Blockade of TGF-β1 by
two different strategies (neutralizing anti-active TGF-β1
antibodies or TGF-β receptor 1 kinase inhibitor) [26] de-
creased fibronectin (Figure 3A and B) and type IV colla-
gen (Figure 3C and D) mRNA and protein expression after
a 24-h incubation with lyso-Gb3. These results suggest
that f ibrosis component induction by lyso-Gb3 is
dependent on recruitment of endogenous TGF-β1.

VDR activation attenuates gene expression induced by
lyso-Gb3

Paricalcitol is a VDR activator that may reduce protein-
uria in patients with chronic kidney disease [15]. Human
podocytes express VDR [27]. VDR mRNA expression
was confirmed by qRT–PCR in our cultured podocytes
(Figure 4A). Paricalcitol prevented the upregulation of

CD74, TGF-β1, f ibronectin and type IV collagen
mRNA and protein expression induced by lyso-Gb3 in
cultured podocytes (Figure 4B–D). Calcitriol, the natural
VDR activator, also prevented lyso-Gb3 actions on
podocytes (Figure 4C and D). VDR activators prevented
the increase in TGF-β1 protein in supernatants from
lyso-Gb3-stimulated cells (Figure 4D).

Discussion

The link between the metabolic abnormality in Fabry dis-
ease and kidney tissue injury is unclear. We now report
that, in cultured podocytes, lyso-Gb3, at concentrations
found in serum of Fabry patients, induces the production
of mediators of glomerular injury shared by another meta-
bolic nephropathy, DN, and that VDR activation prevents
these effects. This information may be useful for the de-
sign of adjuvant therapies that improve outcomes in Fabry
patients with established kidney disease.

Fabry disease is a rare disease [4]. This complicates the
study of pathogenic factors and therapeutic options. Early
ERT is safe and effective in preventing progression of kid-
ney injury [4,12]. The lesser efficacy of ERTonce Fabry ne-
phropathy has caused proteinuria or glomerulosclerosis [12]
raises the need for adjuvant therapies that cooperate with
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ERT in improving outcomes. Glomerulosclerosis is charac-
terized by podocyte injury and loss and glomerular accumu-
lation of ECM, and podocyte injury causes proteinuria
[18,28]. In this regard, ACEIs/ARBswere used in Fabry dis-
ease based upon their efficacy in DN, another metabolic
proteinuric kidney disease with podocyte injury. Addition
of ACEIs/ARBs to ERT has successfully lowered protein-
uria in small trials in Fabry nephropathy [14]. However,
Fabry patients may be at excess risk for hypotension, and
these drugs may not be used in some patients. Thus, add-
itional adjuvant antiproteinuric drugs are required. A correct
understanding of the molecular pathway leading to podo-
cyte injury in Fabry disease would increase the spectrum
of adjuvant therapeutic options. Lyso-Gb3 is a biologically
active cationic amphiphile with a large polar sugar moiety,
rendering it relatively hydrophilic and water soluble. ERT
can reduce, but not easily normalize, plasma lyso-Gb3
[17]. In podocytes, this metabolite engaged secondary med-
iators of podocyte injury, such as TGF-β1 and CD74. This
reminds of the observation that, in podocytes, high glucose

increases TGF-β1, a critical mediator of ECM production,
fibrosis and podocyte injury [29–33], and CD74, a MIF re-
ceptor that regulates the expression of lethal cytokines [20].
The finding, for the first time, that a metabolite accumulated
in Fabry disease modulates the synthesis of mediators in-
volved in DN glomerular injury further supports the notion
that we may learn fromDN in order to advance in the under-
standing of Fabry disease. In this regard, paricalcitol, a se-
lective VDR activator that reduces proteinuria in DN
[15,16], also interrupted the injurious pathway activated
by lyso-Gb3 in podocytes. The natural VDR activator cal-
citriol had a similar protective effect. It is interesting to
note that patients with chronic kidney disease frequently
have deficiencies of both 25(OH) vitamin D and calci-
triol [34,35]. In this regard, Fabry patients with kidney
disease should follow current recommendations regard-
ing identification and treatment of vitamin D deficiency
[34]. We cannot yet recommend the use of VDR acti-
vators for the purpose of nephroprotection based on cell
culture studies. However, Fabry patients with more ad-
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vanced kidney injury, those in which ERT may be less
beneficial, may have an indication for VDR activator
therapy because of vitamin D deficiency or secondary
hyperparathyroidism [34,35]. A potential nephroprotec-
tive effect of paricalcitol or calcitriol should be monitored
in Fabry patients treated with these drugs because of sec-
ondary hyperparathyroidism, in order to get further in-
sights into the clinical relevance of our observation.
Confirmation of the antiproteinuric effect of paricalcitol
in recent clinical trials may expand the potential indica-
tion in Fabry disease to earlier stages of nephropathy.

In summary, we have identified a novel role for lyso-Gb3
in glomerular injury and characterized, for the first time, a
molecular pathway of potential pathogenic significance in
podocyte injury in Fabry nephropathy. Interestingly, this
pathway may be regulated by currently marketed drugs with
antiproteinuric potential, such as VDR activators.
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