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Abstract

Background. In humans, renal endothelial function is
assessed by the vasoconstrictive response to L-NG-
monomethyl arginine (L-NMMA). We hypothesized that
Doppler sonographic measurements of the renal resistive

index in response to inhibition of nitric oxide synthase
offer a new methodological approach for testing renal
endothelial function.

Methods. Forty-one patients without nephropathy were in-
cluded. Para-aminohippurate and inulin clearance were per-
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formed under basal conditions and during L-NMMA infu-
sion. In parallel, renal resistive index was assessed by Dopp-
ler sonography, and central blood pressure was determined.
Results. Following nitric oxide synthase inhibition, renal
resistive index increased significantly, and 29% of our pa-
tients developed Doppler sonographic diastolic zero flow.
Renal plasma flow decreased in response to L-NMMA,
and conversely, renal vascular resistance increased. There
was no correlation of renal vascular resistance and renal
resistive index at baseline and during nitric oxide synthase
inhibition. Changes in renal resistive index were not relat-
ed to changes in renal perfusion or renal vascular resis-
tance. Renal resistive index correlated with central pulse
pressure at baseline and during L-NMMA infusion, where-
as renal vascular resistance did not correlate with central
pulse pressure.

Conclusion. Our data do not support the hypothesis that
renal resistive index is a tool to test renal endothelial func-
tion in humans and should not be used interchangeably
with renal vascular resistance.

Keywords: endothelial function; nitric oxide synthase; renal resistive
index; renal vascular resistance

Introduction

Impaired renal endothelial function is the precursor of ath-
erosclerosis and a shared feature of different diseases af-
fecting the kidneys such as diabetes or hypertension. For
evaluation of renal endothelial function, the invasive clear-
ance technique with inhibition of nitric oxide synthase is
currently applied [1-3]. Renal vascular resistance (RVR)
and renal plasma flow (RPF) in response to nitric oxide
synthase (NOS) inhibition provide information about basal
NO activity and have been suggested to be used for early
risk stratification [4]. However, since this method is time
consuming, invasive and not easily applicable, there is on-
going research for alternative methods that allow evalua-
tion of the renal vasculature in routine clinical diagnostic
workup.

In recent years, assessment of the easily applicable and
widely accessible Doppler sonographic renal resistive in-
dex (RRI) has been examined in multiple studies and dif-
ferent renal conditions [5—7]. The RRI has been established
as predictive parameter for progression of hypertensive ne-
phropathy [8] and for renal allograft survival and patient
survival [9].

With respect to these promising data and in the face of
previous studies, where RRI (or the Doppler sonographic
pulsatility index, respectively) and RVR have been used in-
terchangeably [10-12], and a direct relationship between
these two parameters has been suggested [13—15], we
aimed to establish a new and easily applicable method for
evaluation of renal endothelial function by Doppler sono-
graphic assessment of RRI in response to NOS inhibition.

Subjects and methods

Forty-one participants were recruited by our clinical research competence
unit in Erlangen—Niirnberg (www.crc-erlangen.de). Inclusion criteria were
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Table 1. Clinical characteristics of the study population

Patients (n = 41)

Age (years) 56.6 £ 13.5
Male gender (n) 32 (78%)
BMI (kg/m?) 274 + 4.1
Casual systolic BP (mmHg) 132.2 +13.8
Casual diastolic BP (mmHg) 78.9 £ 10.0

Casual heart rate (bpm) 73 £ 12

Total cholesterol (mg/dl) 202.0 + 38.0
HDL-cholesterol (mg/dl) 504 £ 12.0
LDL-cholesterol (mg/dl) 132.7 +30.3
Triglyceride (mg/dl) 196.1 + 150.9
Urinary albumine excretion (mg/g creatinine) 144 £ 18.2
Glomerular filtration rate (ml/min/1.73m?) 103.4 + 19.0

male or female participants between the age of 18 and 75 years. Exclusion
criteria were severe or resistant hypertension or any form of secondary
hypertension, history of cerebrovascular, cardiovascular or peripheral vas-
cular disorders, impaired renal function as shown by estimated glomerular
filtration rate (GFR) <60 ml/min/1.73m? and/or albuminuria >30 mg/day,
impaired liver function, any chronic or acute inflammatory disease and
any malignant disease. Baseline characteristics are listed in Table 1. Thir-
ty patients had arterial hypertension as defined by casual blood pressure
(BP) 2140/90 mmHg or treatment for hypertension. Antihypertensive
treatment consisted of calcium channel blockers, beta-blockers, thiazid
diuretics, angiotensin-converting enzymes inhibitors or angiotensin recep-
tor blockers or a combination treatment of these agents. None of the pa-
tients was on treatment with a vasodilating agent. If there was any
uncertainty as to whether secondary hypertension could be present, the
patient was not included in the study. Eighteen patients had type 2 diabe-
tes mellitus and were on oral treatment with biguanides, glitazones, sul-
fonylureas or glinides or a combination therapy. Eleven patients were
without any known disease and did not take any medication. Before en-
rolment in the study, written informed consent was obtained from each
participant. The study protocol was approved by the Clinical Investi-
gations Ethics committee of the University of Erlangen—Nirnberg,
Germany. The study was performed in adherence to the principles
of the Declaration of Helsinki and according to Good Clinical Practice
standards.

Constant infusion input clearance

Constant infusion input clearance technique with inulin (Inutest®, Frese-
nius, Linz, Austria) and sodium para-aminohippurate (Clinalfa, Basel,
Switzerland) was used to determine GFR and RPF, respectively, under
baseline conditions and at the end of a 30-min L-NG-monomethyl! argi-
nine (L-NMMA) infusion (Clinalfa AG, Laufelingen, Switzerland) as de-
scribed previously in detail [1,2]. Thereby, L-NMMA was administered
intravenously as a bolus infusion (3 mg/kg body weight) over 5 minutes
followed by constant infusion (1.25 mg/kg body weight) over 25 min. The
total dose of L-NMMA was 4.25 mg/kg body weight.

In parallel, systemic haemodynamic parameters (peripheral systolic,
mean and diastolic blood pressure, pulse pressure and heart rate) were
monitored by an oscillometric device (Dinamap 1846 SX, Criticon, Nor-
derstedt, Germany).

Doppler sonographic assessment of RRI

The B-Mode measurements and the Doppler measurements of the RRI
were performed at the same time using a Hitachi CS 192 Integral/PQ ul-
trasound machine with a 3.5-MHz sector transducer. Patients were placed
in a supine position, and right and left kidneys were evaluated for mor-
phologic criteria in order to exclude patients with any difference in size or
morphology between kidneys or suspicion for renal artery stenosis. At
baseline, an interlobar artery was located using colour flow imaging.
Three measurements of maximum systolic velocity and minimal diastolic
velocity were recorded after 120 min of resting as baseline values and at
specific time points (02 min, 7-10 min, 17-20 min, 27-30 min) during
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Table 2. RPF, GFR, RVR and RRI at baseline and in response to L-NMMA

RVR (mmHg*min*ml™")

GFR (ml/min/1.73m?)

RPF (ml/min/1.73m?) RRI (arbitrary units)

Baseline 85.8 £20.8 125.0 £ 21.6
L-NMMA 104.4 + 25.7* 128 £ 21.6
% of change 224 +18.1 30+73

702.6 + 129.3 62.8 +7.4
621.9 = 117.8* 76.9 + 15.3*%
-113+7.5 22.5+15.7

*P-value <0.05 of change between baseline and L-NMMA.

Table 3. Central SBP, central DBP and central PP at baseline and in response to L-NMMA

Central SBP (mmHg)

Central DBP (mmHg) Central PP (mmHg)

Baseline 123.5 £20.2
L-NMMA 140.6 + 28.1
% of change 14.0 £ 12.9*

77.8 +£12.2 45.7 £ 13.0
85.1+ 143 55.6 +19.7
9.9 +11.2* 21.0 £ 22.2%

*P-value <0.05 of change between baseline and L-NMMA.

Table 4. Correlation coefficients and P-value of RVR and RRI at
baseline and in response to L-NMMA with central systolic and
diastolic blood pressure, heart rate and pulse pressure at baseline and
in response to L-NMMA

RVR baseline RRI baseline

A
Systolic BP at baseline (mmHg)
r 0.359 0.267
P-value 0.03* 0.10
Diastolic BP at baseline (mmHg)
r 0.497 —0.167
P-value 0.002* 0.31
Heart rate at baseline (bpm)
r 0.253 0.168
P-value 0.13 0.31
Pulse pressure at baseline (mmHg)
r 0.087 0.569
P-value 0.60 <0.001*
RVR L-NMMA RRI L-NMMA
B
Systolic BP with L-NMMA (mmHg)
r 0.470 0.158
P-value 0.004* 0.34
Diastolic BP with L-NMMA (mmHg)
r 0.539 -0.224
P-value 0.001* 0.17
Heart rate with L-NMMA (bpm)
r 0.351 0.194
P-value 0.04* 0.24
Pulse pressure with L-NMMA (mmHg)
r 0.249 0.442
P-value 0.14 0.005*

r = correlation coefficient. *P < 0.05.

infusion of L-NMMA using the power Doppler function. The dimension-
less RRI was calculated using the formula:

RRI = [(maximal systolic velocity
—minimal diastolic velocity)
/ maximal systolic velocity) x 100].

All measurements were performed by the same investigator.

Pulse wave analysis

To derive the central arterial waveform, a validated system (Sphygmocor™;
AtCor Medical, Sydney, Australia) was used that employs high-fidelity ap-
planation tonometry (Millar) for non-invasive registration of peripheral ar-
terial pressure waves and appropriate computer software for pressure wave
analysis (Sphygmocor™). Pressure calibration was accomplished through
automatically, non-invasively obtained supine BP of the brachial artery of
the dominant arm after a 30-min rest (Dinamap Compact T; Johnson &
Johnson Medical Ltd, Newport, UK). BP was measured five times over
10 min, and the mean of the last three measurements was taken for calibra-
tion after rest.

Pressure wave recording was then performed at the radial artery of the
same arm with the wrist gently hyperextended. The pressure wave was
averaged from single pressure waves recorded sequentially for 8 s. Aver-
aged pressure waves were accepted only if variation of peak and bottom
pressures of single pressure waves were <5%. The central pressure wave
was then automatically synthesized from the radial pressures by a built-in
generalized transfer function. Prior to analysis, a visual check for correct
detection of inflection points was performed in each wave by an indepen-
dent blinded investigator. From the derived central waveforms, data are
given on central systolic and diastolic BP and pulse pressure.

Statistical analyses

All statistical analyses were carried out using SPSS software (release
16.0, SPSS Inc., Chicago, Illinois, USA). Results are given as mean +
SD and as mean + SEM in figures. Comparison of paired samples was
performed using Student's s-test. Comparisons between groups were per-
formed using one-way ANOVA and Bonferroni post hoc test. Correlation
analyses were performed using Pearson's test for parametric data and
Spearman rho for non-parametric data. Two-tailed values of P < 0.05
were considered statistically significant. Since, to our knowledge, this
study analysing the effect of NOS inhibition on renal perfusion by ultra-
sonographic methods was carried out for the first time, no corresponding
data have been available, and no sample size calculation has been carried
out.

Results

Inhibition of NOS leads to a significant increase in RRI
from baseline throughout the 30-min L-NMMA infusion.
A significant increase of RRI occurred 7-10 min after
starting infusion of L-NMMA (23% + 16, P < 0.001)
and revealed its maximum after 17-20 min (27% =+ 19,
P <0.001).

Data of RPF, GFR and RVR at baseline and after L-
NMMA infusion are shown in Table 2. Inhibition of
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Fig. 1. Scatter plot of Doppler sonographic renal resistive index and renal
vascular resistance—assessed by invasive clearance technique—under
baseline conditions. Correlation coefficient is 0.032 with P = 0.84.

NOS with L-NMMA lead to a significant decrease in RPF
(P = 0.001). GFR remained stable during infusion of L-
NMMA. RVR increased significantly with NOS inhibition
(P <0.001).

L-NMMA infusion led to a significant increase of cen-
tral systolic BP by 14.0% + 12.9 from baseline (P <
0.001). Central diastolic BP increased by 9.9% + 11.2
from baseline (P < 0.001). Central pulse pressure (PP) in-
creased by 21.0% £22.2% (P <0.001). Heart rate decreased
by 8.9% + 8.8 (P < 0.001) in response to L-NMMA after
17-20 min (Table 3).

RRI at baseline and in response to L-NMMA infusion
(mean value of RRI after 7-10 min and 17-20 min) was
correlated with central PP but not with central systolic,
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mean and diastolic BP (Table 4A and B). In contrast,
RVR was correlated with central systolic and diastolic
BP at baseline and during L-NMMA infusion but not with
central PP.

No correlations between the absolute values of RVR and
the RRI at baseline (» = 0.032, P = 0.844) (Figure 1) and
during L-NMMA infusion (7-10 min » = 0.008, P = 0.96;
17-20 min » = 0.265 » = 0.10; 27-30 min » = 0.176 r =
0.29) were observed. In accordance, we found no relation-
ship between the changes of RRI and RVR following NOS
inhibition ( = 0.265, P = 0.10).

Subgroup analysis

In an exploratory analysis, we evaluated diabetic patients
(n = 18) on oral antidiabetic medication, hypertensive
patients (n = 12) and control subjects. Our control sub-
jects had no history of diabetes or hypertension (n = 11)
and were younger than the diabetic and hypertensive pa-
tients. GFR was within the normal range in all subjects,
and no microalbuminuria was present.

There was no correlation between RRI and RVR at base-
line (diabetics » = —0.168, P = 0.51; hypertensives r =
0.056, P = 0.86; controls » = 0.333, P = 0.35) and during
L-NMMA infusion (diabetics » = —0.045, P = 0.86; hyper-
tensives » = —0.027, P = 0.94; controls r = —0.006, P =
0.99), and the change of RRI and RVR in response to
L-NMMA also did not correlate in any of the groups
(date not shown). The RRI in diabetics was greater at
baseline and during L-NMMA infusion than in hyperten-
sive and control subjects (Figure 2). In diabetic patients,
maximum increase of RRI was 32 + 3.8% over baseline
after 7-10 min of L-NMMA infusion whereas maximum
increase of RRI was 32 + 6.6% in hypertensive patients
after 17-20 min. In controls, the maximum increase of
RRI occurred after 7-10 min and was 17 + 4.5%.

*p=0.001

*p=0.002

30 T T

Baseline L-NMMA 0-2min  L-NMMA 7-10min L-NMMA 17-20min L-NMMA 27-30min

Fig. 2. Changes in renal resistive index over time in response to L-NMMA in diabetic patients (circles), hypertensive patients (squares) and controls
who had no history of diabetes or hypertension (triangles). Shown is the average (+ SEM) at baseline and at each time point of the ultrasonographic
Doppler measurements during L-NMMA infusion. Asterisks indicate significant differences between diabetic patients and controls. Number signs

indicate significant differences between diabetic and hypertensive patients.
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Fig. 3. Renal vascular resistance assessed by invasive clearance technique at baseline (black squares) and in response to inhibition of nitric oxide
synthase with L-NMMA (gray squares) in diabetic patients, hypertensive patients and controls who had no history of diabetes or hypertension.
Shown is the mean (+ SEM) *P < 0.05 between baseline values and values in response to nitric oxide synthase inhibition

RVR increased in all groups (diabetics 28.4 + 21.4%;
hypertensives 15.9 + 17.5%; controls 18.9 + 7.0%) but
there were no significant differences in the increase of
RVR between the groups (diabetics vs. hypertensives P =
0.22; diabetics vs. controls P = 0.54; hypertensives vs. con-
trols P = 1.0) (Figure 3).

Discussion

Diabetes and hypertension directly damage the renal vas-
culature. One early feature of this vascular damage is en-
dothelial dysfunction. To date, only invasive clearance
techniques with determination of renal perfusion and
RVR in response to NOS inhibition have been applied
for evaluation of endothelial function in the renal vascu-
lature. In numerous studies, RRI assessed by Doppler
sonography has been used interchangeably with the
RVR suggesting a close relationship of these two para-
meters [10—12]. Hence, in order to evaluate a new and
easily applicable non-invasive approach to test renal en-
dothelial function, we measured RVR by invasive clear-
ance technique at baseline and during inhibition of NOS
and—in parallel—conducted Doppler sonographic mea-
surements for assessment of RRI. In accordance with
previous studies, RPF decreased and RVR increased with
inhibition of NOS. Doppler sonographic RRI increased
with a maximum of 27% over baseline in response to
NOS inhibition. Despite a numerically similar increase
of RVR and RRI in response to NOS inhibition, we
found no correlation of these two parameters—neither
at baseline nor during L-NMMA infusion. In accordance,
the percentage of change of RRI and RVR did not cor-
relate. In an ex vivo model of perfused rabbit kidneys,
Bude et al. demonstrated that RRI is dependent on vas-
cular compliance and vascular resistance of the renal cir-

culation, and that RRI becomes less and less dependent
on vascular resistance with decreasing compliance [16].
Since some of our patients suffered from diabetes and/or
hypertension which may impair vascular compliance of
the large arteries, we performed a subgroup analysis
but again found no correlation of RRI and RVR in
any group not even in the control group at younger age.

Inhibition of NOS resulted in an increase of central
blood pressure and pulse pressure. RVR was associated
with central systolic and diastolic blood pressure whereas
RRI correlated with central pulse pressure at baseline and
during L-NMMA inhibition. This disparate pattern of cor-
relations suggests diverse underlying physiological me-
chanisms of RRI and RVR.

A similar association of RRI with pulse pressure has
been previously described by Heine et al. [17]. In addition,
they demonstrated an association of RRI with systemic
atherosclerosis in kidney transplant recipients [18]. In an
ex vivo pulsatile perfusion model in rabbit kidneys, RRI
and pulse pressure were strongly correlated, whereas RRI
and RVR were not. In this model, only marked and non-
physiologic increases of RVR—induced by infusion of
phenylephrine—elevated RRI [19]. In contrary, in our
study, we found similar increases of RRI and RVR in re-
sponse to NOS inhibition. However, an association of
these increases was also not found. The discrepant results
regarding the increase of RRI and RVR in the ex vivo mod-
el and our study group might be related to the different
mechanism of action of the used vasoconstrictors: Phenyl-
ephrine exerts its vasoconstrictive effect on vascular
smooth muscle cells, and its vasoconstrictive response
can partially be compensated by nitric oxide, the most po-
tent vasodilator. L-NMMA directly inhibits nitric oxide re-
leased from the endothelium and might thus induce an
exaggerated vasoconstriction of the renal vasculature—
both of small and large vessels—without compensatory
mechanisms.
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In a model of isolated perfused rabbit kidneys, Bude et
al. found that an increase of the cross-sectional area of the
distal arterial bed resulted in a decrease of RRI—indepen-
dent of vascular compliance and vascular resistance [20].
This might explain the higher baseline RRI observed in the
elderly or in patients with diabetes or hypertension, and
has been also found in our study population for the diabet-
ic subjects [10,21,22]. In these patients, cross-sectional ar-
ea might be decreased by remodelling and damage to the
small renal arteries and arterioles.

In our subgroup analysis, RVR increase in response to
NOS inhibition was not different between the groups, but
RRI increase showed a trend towards lower values in the
healthy controls compared to diabetic patients (P = 0.07;
data not shown) underscoring the above results.

Taken together, our in vivo results are in context with
results from ex vivo models and weaken the assumption
that RVR is the main determinator of RRI. In fact, RRI
is a complex integral of different influences such as vas-
cular resistance vessels, compliance of large arteries
(aorta and renal arteries) and pulse pressure, and is not
yet fully understood. RRI measurements during inhibi-
tion of NOS are not a valid approach for analysing renal
endothelial function, since we could not find a close cor-
relation between RRI assessed by Doppler sonography
and the RVR determined by invasive clearance tech-
nique. Thus, we recommend that RRI and RVR are
not to be used interchangeably as long as the RRI is still
a miscellaneous parameter of unknown composites.
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