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Abstract

Macrophage accumulation is a prominent feature in
most types of human glomerulonephritis. In particular,
tubulointerstitial macrophage accumulation correlates
with the degree of renal dysfunction and is predictive
of disease progression. Depletion studies have shown
that macrophages can induce glomerular injury in
experimental glomerulonephritis. Moreover, recent
studies targeting chemokines and adhesion molecules
have shown that inhibiting macrophage accumulat-
ion can suppress progressive renal injury in animal
models of glomerulonephritis. Macrophages can pro-
duce many molecules with the potential to cause renal
damage, although the precise mechanism(s) of macro-
phage-mediated renal injury have yet to be determined.
It is now evident that tubules—a major source of
chemokines and adhesion molecules—play an active
role in promoting interstitial macrophage infiltration
and activation. Thus, targeting pro-inflammatory
functions of tubular epithelial cells may be an
effective means to inhibit macrophage-mediated
tubulointerstitial injury without causing systemic
immunosuppression.
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Macrophage accumulation in glomerulonephritis

Glomerular macrophage influx in the injured kidney
was first demonstrated 25 years ago [1]. The culture
of glomeruli isolated from patients with crescentic
glomerulonephritis showed the presence of large
numbers of highly motile cells. These were identified
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as macrophages on the basis of phagocytic function
and ultrastructural characteristics [1]. Subsequent
studies with monoclonal antibodies demonstrated
that glomerular and interstitial macrophage infiltra-
tion occurs in most forms of primary and secondary
glomerulonephritis  [2,3]. Glomerular macrophage
accumulation has been confirmed in many studies of
human glomerulonephritis, but the relationship
between macrophage numbers and the degree of
renal dysfunction and proteinuria is controversial [4].
In contrast, there is a broad consensus that the
number of interstitial macrophages correlates with
the degree of renal dysfunction at the time of biopsy
[4]. Indeed, the degree of interstitial macrophage
accumulation predicts progression in lupus nephritis
and IgA nephropathy [5,6]. This is consistent with
the finding that tubulointerstitial rather than glomer-
ular lesions correlate with renal dysfunction in
human glomerulonephritis [7,8].

Glomerular and interstitial macrophage accumula-
tion is also prominent in most experimental models
of kidney disease, irrespective of whether the initial
renal insult is mediated via immune or non-immune
mechanisms [4]. Time-course studies have shown a
close association between macrophage accumula-
tion and the development of renal injury in many of
animal disease models, including focal and seg-
mental glomerulosclerosis and crescentic anti-GBM
glomerulonephritis [9,10].

Experimental evidence that macrophages cause
renal injury

Although studies in human glomerulonephritis
strongly suggest a role for macrophages in causing
renal injury, such descriptive data are not conclusive.
This issue has been addressed by extrapolating the
results of macrophage depletion in animal models
of glomerulonephritis.
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A number of different strategies have been used
to block renal macrophage infiltration. Systemic
irradiation with kidney shielding prevented glomerular
macrophage infiltration and abolished proteinuria
in rat accelerated anti-GBM disease [11]. Glomerular
macrophage infiltration and proteinuria have also
been blocked by administration of polyclonal anti-
macrophage sera in models of anti-GBM disease,
serum sickness and Heymann’s nephritis [12-14].
A different approach is the use of a micro-encapsulated
toxic drug, dichloromethylene diphosphonate, which
is taken up preferentially by phagocytic cells.
Although an efficient means to kill macrophages, such
preparations can deplete circulating C3 levels. This
method has been used to inhibit glomerular macro-
phage accumulation and proteinuria in anti-GBM
glomerulonephritis [15], and to inhibit glomerular
macrophage accumulation with a consequent reduc-
tion in mesangial matrix expansion in anti-Thy-1
mesangioproliferative nephritis [16].

Rather than systemic macrophage depletion, recent
studies have focused on inhibiting the mechanisms by
which blood monocytes are recruited into the kidney.
Inhibiting the action of pro-inflammatory cytokines
interleukin-1 (IL-1), tumour necrosis factor-o. (TNF-a)
and macrophage migration inhibitory factor (MIF)—
whose expression is markedly up-regulated in the
injured kidney—has been shown to inhibit glomer-
ular and interstitial macrophage infiltration and
suppress renal injury in experimental glomeruloneph-
ritis [17-21]. The success of such cytokine blockade
studies has been attributed to preventing up-regulation
of chemokine and leukocyte adhesion molecule expres-
sion within the kidney. For example, IL-1 induces
expression of monocyte chemotactic molecule-1
(MCP-1), macrophage colony-stimulating factor
(M-CSF), intercellular adhesion molecule-1 ICAM-1),
osteopontin and CD44 by renal cell types [18,22-26].
Moreover, delaying cytokine blockade treatment
until disease is already established has demonstrated
a crucial role for cytokines such as IL-1 and MIF in
progressive renal injury in rat crescentic anti-GBM
glomerulonephritis [27,28].

Targeting of individual chemokines and adhesion
molecules has also proven effective in inhibiting renal
macrophage infiltration, thus both defining the
molecules regulating blood monocyte recruitment and
demonstrating the functional importance of macro-
phages in mediating renal injury. Blockade of chemo-
kines (MCP-1, RANTES) or leukocyte adhesion
molecules (ICAM-1, osteopontin) has been shown
to inhibit macrophage accumulation and consequent
renal injury in models of anti-GBM glomerulo-
nephritis [29-33]. In addition, delaying chemokine or
adhesion molecule blockade until disease is established
is still effective in suppressing macrophage infiltration
and renal injury [30,32,33]. Although these data are
strongly supportive of a role for macrophages in
causing renal injury in both the inductive and pro-
gressive phases of experimental kidney disease, it must
be remembered that blockade of chemokines and

D. J. Nikolic-Paterson and R. C. Atkins

adhesion molecules also suppresses T-cell infiltration
and that renal injury in the commonly studied models
(anti-GBM disease and lupus nephritis) is T-cell
dependent.

Mechanisms of macrophage-mediated renal injury

Macrophages are important effector cells in both the
adaptive and the innate immune response. In a similar
fashion, it is thought that macrophages can mediate
renal injury in both T-cell-dependent and -independent
models of glomerulonephritis. Manoeuvers to block
T-cell activation invariably suppress macrophage
accumulation in parallel with inhibition of renal
damage [34,35]. This is true whether such T-cell-
targeted modalities are administered from the start
of disease induction or delayed until disease is
already established [34]. Thus, we can extrapolate
that macrophages are the main effector population in
T-cell-directed renal injury. In contrast, fewer studies
have been performed in T-cell-independent models
of glomerulonephritis. Irradiation-induced depletion
was used to show that macrophages mediate the
adverse effects of cholesterol feeding in rat puromycin
aminonucleoside nephrosis (PAN) [36]. Similarly,
irradiation-induced depletion has identified a role
for macrophages promoting mesangial hypercellularity
and mesangial matrix expansion in the rat remnant
kidney [37]. Macrophage depletion in anti-Thy-1
mesangioproliferative nephritis also reduced mesangial
matrix expansion, although proteinuria and mesangial
cell proliferation were unaffected [16].

Macrophages are a heterogeneous population and
can exhibit a wide array of responses depending upon
the nature of the stimulus. In particular, macrophages
can be stimulated to secrete a wide range of molecules
which have the potential to cause renal damage.
Macrophages and their products have been implicated
in a number of pathological processes in glomerulo-
nephritis, including: cell toxicity (reactive oxygen
species, nitric oxide, TNF-o, complement factors); base-
ment membrane damage (reactive oxygen species,
metalloproteinases); decline in glomerular filtration
rate (thromboxane AZ2); mesangial cell prolifera-
tion (PDGF, FGF-2, IL-1); crescent formation (IL-1,
TNF-a, MIF, procoagulant activity); glomerulo-
sclerosis; and interstitial fibrosis (TGF-f1, PDGF,
FGF-2, fibronectin).

Specific inhibition of these individual mediators
have shown that some of them (reactive oxygen
species, 1L-1, TNF-o, MIF, PDGF, TGF-f1, tissue
factor) do indeed play pathogenic roles in experimental
models of renal injury. However, these products are
not unique to macrophages. Indeed, many of these
products are also made by intrinsic renal cells in
the diseased kidney. Thus, the relative contribution
of macrophages to the renal injury caused by these
mediators remains to be determined.



Macrophages in glomerulonephritis

A new approach to understanding macrophage
functions in the kidney is the use of adoptive transfer
[38]. This involves perfusing macrophages (either a
cell line or freshly prepared bone marrow-derived
macrophages) into the renal artery such that some cells
enter glomeruli and remain there for ~24-48 h. For
example, transfer of NRS8383 macrophages into
normal rats induced stromelysin production by resid-
ent glomerular cells [39]. This effect was dependent
upon macrophage activation, since blockade of the
transcription factor NF-«B in the transferred macro-
phages prevented the induction of stromelysin produc-
tion [40]. In contrast, glomerular macrophage transfer
into rats with anti-Thy-1 mesangioproliferative neph-
ritis failed to induce stromelysin production by
resident cells due to TGF-§ production within the
damaged glomerulus, indicating a potential beneficial
effect of TGF-f in down-regulating macrophage-
mediated renal injury [41,42]. This finding raises the
issue of how the glomerular microenvironment affects
macrophage function.

The concept macrophage ‘programming’ has been
proposed by Rees and colleagues [43]. It is postulated
that the glomerular microenvironment first encoun-
tered by a blood monocyte upon entry into the
glomerulus determines the pattern, or programme, of
responses that that cell can subsequently make. This is
based upon experiments in which an initial cytokine
exposure can render rat bone marrow-derived macro-
phages unresponsive to a different stimulus given
several days later [44]. The relevance of these in vitro
observations were shown in a study of acute rat anti-
GBM glomerulonephritis in which macrophages
isolated from inflamed, but not from normal glomeruli
were shown to be unresponsive to the effects of anti-
inflammatory cytokines in an assay of nitric oxide
production [45].

A role for macrophages in renal repair

This review has focused on macrophages as a cause of
renal injury. However, macrophage infiltration into the
kidney may not always be detrimental since these
cells have a number of functions that lend themselves
to promoting renal repair. Macrophages are efficient
at phagocytosing and removing apoptotic cells, depos-
ited immune complexes and fibrin. In addition,
macrophages can secrete hepatic growth factor and
vascular endothelial growth factor, which can promote
the repair of damaged tubules and endothelium,
respectively.

Role of tubular cells in promoting interstitial
macrophage accumulation

As discussed above, it is interstitial rather than
glomerular macrophage accumulation that correlates
with progressive loss of renal function in human
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glomerulonephritis. There is growing evidence that
tubular epithelial cells may promote interstitial macro-
phage infiltration and activation [46]. In situ localiza-
tion studies have shown that tubules are a major
site of cytokine production (IL-1, TNF-o and MIF)
in the injured kidney, cytokines being molecules that
have a proven role in promoting interstitial macro-
phage infiltration and tubulointerstitial damage [21,
47-49]. In addition, tubules produce a number of
chemokines (MCP-1, M-CSF, MIP-1f, MIP-2), and
express various leukocyte adhesion molecules (osteo-
pontin, ICAM-1, VCAM-1, CD44) [24,25,31,33,50,51].
Figure 1 illustrates the marked up-regulation of
tubular M-CSF mRNA expression seen in rat anti-
GBM glomerulonephritis. The increase in tubular
M-CSF mRNA expression is closely related to local
macrophage proliferation, macrophage accumulation
and tubulointerstitial damage.

Experimental support for the postulate that tubules
promote interstitial macrophage infiltration has come
from studies using anti-sense oligonucleotides. This
is based upon the fortuitous observation that oligo-
nucleotides delivered systemically are, in part, taken
up by proximal tubules, but not glomeruli, in a

Fig. 1. (a) In situ hybridization showing constitutive macrophage
colony-stimulating factor (M-CSF) mRNA expression in a few
glomerular cells and ~25% of cortical tubules in normal rat kidney.
(b) Day 14 of rat anti-GBM glomerulonephritis shows a marked
up-regulation of tubular M-CSF mRNA expression with most
tubules positive. There is also an increase in glomerular M-CSF
expression (mainly podocytes) and some interstitial M-CSF™ cells
are present. Original magnification x 200.
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non-specific fashion. Using this strategy, Cheng et al.
[52] showed that administration of an anti-sense
ICAM-1 oligonucleotide reduced tubular ICAM-1
protein expression in mice with unilateral ureteric
obstruction. The consequence was inhibition of inter-
stitial macrophage accumulation and a remarkable
preservation of tubulointerstitial architecture. This
is interesting in the context of a study by Shappell
et al. [53], who showed that histological damage
and interstitial macrophage infiltration is unaffected
following unilateral ureteric obstruction in lympho-
cyte-deficient (SCID) mice. Thus, it can be argued that
macrophages cause tubulointerstitial injury independ-
ent of T-cells in this non-immune model of kidney
damage.

A pivotal set of studies by Okada and colleagues
[54,55] have demonstrated the potential for targeting
tubular cell activation in progressive tubulointerstitial
injury in glomerulonephritis. Using a model of anti-
GBM glomerulonephritis induced in Wistar-Kyoto
(WKY) rats, a period from day 27 to 37 was identified
as the time at which significant interstitial macrophage
infiltration and tubulointerstitial damage occurred.
This was targeted by intravenous administration
of anti-sense oligonucleotides for MCP-1 or osteopon-
tin during this critical period. For each molecule
targeted, anti-sense oligonucleotide treatment caused
an ~50% reduction in interstitial macrophage accu-
mulation, a reduction in tubulointerstitial damage
and an improvement in renal function [54,55].

Conclusions

Based upon animal studies, it appears likely that the
prominent macrophage infiltrates seen in biopsies of
human glomerulonephritis mediate renal damage lead-
ing to a progressive loss of renal function. Substantial
progress has been made in defining the chemo-
tactic and adhesion molecules involved in regulat-
ing blood monocyte entry into the kidney. However,
systemic chemokine or adhesion molecule blockade
will inhibit blood monocyte recruitment at any
site of inflammation and may thus not be desirable.
There are two alternative strategies by which it may
be possible to inhibit macrophage-mediated renal
injury.

First, it is necessary to identify the precise mechan-
isms by which macrophages mediate renal injury. It
may be possible to target such mechanisms through
systemic drug delivery, such as the case for blocking
cytokine (IL-1, TNF-o or MIF) function. However,
if the mechanism cannot be safely targeted through
systemic drug administration, e.g. it may not be
desirable to systemically block TGF-f1, then macro-
phage-specific drug delivery systems (such as micro-
encapsulation) could be employed. This approach
depends upon the drug treatment Ileaving key
host defense functions of the monocyte intact, such
as entering sites of infection and killing invading
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micro-organisms through phagocytosis and nitric
oxide production, while inhibiting those functions
that mediate renal injury.

A second alternative strategy is to inhibit specifically
the entry of blood monocytes into the tubulointersti-
tium without affecting monocyte recruitment into
other sites of inflammation. This may be possible by
targeting tubular production of chemokine and/or
adhesion molecules using anti-sense oligonucleotides
or via more generalized anti-inflammatory drugs using
a vehicle delivery system with specificity for tubular
epithelial cells.
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