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Introduction Epidemiological significance

It was only natural that the epidemiological impact ofParasites constitute an important ally in the rich trop-
ical and subtropical bioecology, mainly due to the parasitic infections was recognized initially in acute

renal failure. Not unexpectedly, the first reports cameprevailing climatic conditions, socio-economic stand-
ards and lack of adequate preventive health care up from South East Asia [13], where up to 18.5% of
programmes. Despite their general epidemiological sig- acute renal failures (38.5% of those due to medical
nificance, their impact on nephrological practice has causes) are attributed to Plasmodium falciparum infec-
been overlooked for many decades, largely as a result tion. Infection with the same parasite has been associ-
of the lagging standard of the specialty in endemic ated with acute renal failure in other parts of the
areas. world, such as India, Nigeria, Singapore and Brazil.

Nevertheless, parasites emerged in recent years as Yet the incidence of this complication is much lower
important agents that may cause opportunistic infec- than in Thailand, which remains the leading country
tions in the immunocompromised. Of particular in this feature for reasons which are unclear.
importance in this respect are cryptosporidosis [1], The epidemiological significance of chronic parasitic
toxoplasmosis [2], leishmaniasis [3], trypanosomiasis infection is increasingly recognized [14], and has
[4] strongyloidiasis [5], malaria [6 ] and schistosomiasis already established firm grounds in two diseases,
[7]. These infections may be either acquired de novo namely malaria and schistosomiasis. That chronic mal-
(e.g. toxoplasmosis, and malaria) or a dormant infec- aria can lead to chronic renal disease was hinted at in
tion may be activated as a result of immunosuppression the Hippocratic scripts, 400 years BC [15]. Bright’s
(e.g. cryptosporidosis and strongyloidiasis). disease was attributed to chronic infection with

Parasites have also proven to be useful laboratory Plasmodium malariae in 1884 [16 ]. The term ‘malarial
tools in experimental immunology, particularly when nephritis’ was introduced ultimately by Giglioli in
it comes to addressing the monocyte, the principal cell British Guyana [17], and its epidemiological signific-
involved in the innate defence against parasitic infec- ance among Nigerian children was appraised in the
tions. Parasites have been particularly useful in dev- early 1960s [18]. The population density as well as the
eloping certain concepts such as the up-regulation high prevalence of infection in endemic areas has
of monocyte function by granulocyte–macrophage resulted in the notion that malaria is the most common
colony-stimulating factor (GM-CSF ) (using trypano- cause of secondary nephrotic syndrome worldwide
somes) [8], their down-regulation by antigen (using (Figure 1). Although the exact contribution of quartan
Leishmania [9] and Schistosoma [10]), phospholipids malarial nephropathy to the general prevalence of
(using Ecchinococcus) [11], interleukin-10 (IL-10) chronic renal failure is ill-defined, there has been
(using schistosomes [12]) and others. Despite their considerable regression in this parameter following
clinical and academic significance in nephrology, the successful malarial control programmes in several
mentioned aspects of parasitic disease are not African countries, most notably in Uganda [19].
the objective of this review. In the following pages, I The role of schistosomiasis in the prevalence of end-
focus on parasites as agents causing renal disease, stage renal disease (ESRD) is species-dependent, and
an issue that may have considerable epidemiological is geographically variable. Schistosoma hematobium,
importance in tropical and subtropical regions, but present only in Africa (Figure 1), is reported to lead
may also have some sporadic clinical relevance even to lower urinary tract morbidity, ranging from in 2%
in non-tropical territories. of infected subjects in Nigeria, to 52% in Tanzania

[20]. Upper urinary tract pathology varies from 9.7%
in the Niger to 48% in Cameroon [20]. Urinary schis-
tosomiasis is blamed as the principal aetiology inCorrespondence and offprint requests to: Professor Rashad Barsoum,
20% of patients on regular dialysis in Egypt [21].Chairman Cairo Kidney Center, PO Box 91, Bab-El-Louk, 11513

Cairo, Egypt. Schistosoma mansoni is more widely spread (Figure 1),
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Fig. 1. Worldwide distribution of epidemiologically significant parasitic nephropathies.

being encountered mainly in Africa, South America brane knobs [25] rich in sticky proteins such as PfEMP-
1 (P.falciparum erythrocyte membrane protein) and theand East Asia. It eventually leads to periportal fibrosis

and portal hypertension. About 15% of patients with histidine-rich proteins HRP-1 and HRP-2 [26 ]. These
bind to complementary sites on unparasitized red cells,this disease develop an immune-mediated glomerulopa-

thy, usually referred to as ‘schistosomal glomerulopa- platelets, monocytes and, most critically, the vascular
endothelium. Such adhesion molecules, which arethy’, which often progresses to ESRD [22,23]. About

10% of patients on regular dialysis in Egypt attributed expressed as a consequence of antigen-induced mono-
cyte activation, include P-selectins [27], intercellulartheir condition to this syndrome [21].
cell adhesion molecule-1 (ICAM-1) [28], vascular cell
adhesion molecule-1 (VCAM-1), thrombospondin,

Clinical profile CD36 and chondroitin sulfate [26 ].
In addition, the effect of the parasitic agent on the

monocytes leads to a cascade of mediator release veryParasitic nephropathies naturally fall into one or other
similar to that encountered in septic shock [29]. Thisof three categories: (i) acute renal injury caused by the
leads to peripheral blood pooling, reduction of thesystemic effects of severe infection; (ii) physical inva-
effective blood volume and haemoconcentration.sion of the urinary tract by the parasite; and (iii) renal
Diminished organ perfusion becomes exaggerated,injury caused by the host–parasite immune interaction.
including the kidneys, liver and lungs. The subsequent
evolution of the morbid physiology is shown in
Figure 3.Acute renal failure

Acute renal failure in falciparum malaria is usually
associated with the triad of jaundice, severe hyponatra-Acute renal failure may be encountered in several
emia and hypoglycaemia. Hyperkalaemia, hypocal-parasitic infections, including those which lead to
caemia, hypophosphataemia and severe acidosis areprofound systemic illness, leading to acute tubular
common features. Disseminated intravascular coagula-necrosis (e.g. falciparum malariae); those associated
tion, coma and circulatory failure are terminal eventswith acute interstitial nephritis (e.g. leishmaniasis) and
[30].occasionally those associated with the acute nephritic

Falciparum malarial ARF is a serious disease, whichsyndrome (e.g. trichinosis). The latter two categories
carries 15–30% mortality in most published series [30].are discussed under their individual headings.
It is almost uniformly fatal when associated with ‘black
water fever’, characterized by massive haemolysis that

Acute tubular necrosis usually follows quinine therapy in patients with glu-
cose-6-phosphate dehydrogenase (G6PD) deficiency.Falciparum malaria is associated with acute tubular
Haemodialysis is usually risky due to the associatednecrosis in 1–4% of cases; the incidence being as high
circulatory insufficiency. Peritoneal dialysis is thereforeas 60% in ‘malignant malaria’ [24]. Intravascular red
used more frequently. The latter has the additionalcell sludging, haemolysis and massive monocyte activa-
advantages of dealing more adequately with the hyper-tion are the main pathogenetic mechanisms (Figure

2). Parasitized red cells show characteristic cell mem- catabolic state, ameliorating hypoglycaemia, and being
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Fig. 2. Mechanisms of P.falciparum-induced morbidity.

Fig. 3. Haemodynamic and metabolic abnormalities in malignant malaria. ARP=acute phase reactants; ROS=reactive oxygen substrate;
ADH=antidiuretic hormone.

more readily available in endemic areas. Relatively failure has been described in asplenic patients. It
responds to clindamycin and in severe cases to quininegood results have been reported with blood exchange

and apharesis. therapy [31].
Another parasitic agent, Babessia microfti, morpho-

logically similar to P.falciparum, is transmitted by a
Physical invasiontick bite and exists mainly in Eastern Europe and

South America. Infection with this parasite leads to
fever, chills and malaise associated with nausea and The urinary tract may be directly involved by depos-

ition of parasitic products in only a few conditions,arthralgias. A severe illness leading to acute renal
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Fig. 4. Schistosoma hematobium. Left: cluster of ova with their characteristic terminal spikes. Right: typical schistosomal granuloma in the
bladder submucosa, composed of monocytes, lymphocytes, granulocytes and fibroblasts around a distorted ovum.

Fig. 5. Cystoscopic appearances in different stages of bladder schistosomiasis. Top left, bilharzial pseudotubercles; top right, tubercles and
a sessile mass; bottom left, ulcer amidst pseudotubercles; bottom right, sandy patches.
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the most significant being schistosomiasis (worms examination; the site of obstruction can be demon-
strated by lymphangiography.and ova), ecchinococcosis (cysts) and filariasis (adult

worms).

Immune-mediated parasitic nephropathiesSchistosomiasis

Schistosoma hematobium adult worms inhabit the per-
ivesical venous plexus in couples. Females lay ova with The immune response to parasitic infections (Figure

6) is complex, involving natural host resistance,terminal spikes, which excite a delayed hypersensitivity
reaction leading to the formation of granulomata acquired host immunity and parasite-induced immuno-

suppression which is aimed at evading the host’s(Figure 4) mainly in the submucosa of the bladder,
ureters, urethra and genital system. They coalesce to response (concomitant immunity) [38].

The host tends to eliminate the parasite by innateform ‘pseudotubercles’ that can be seen readily by
cystoscopic examination (Figure 5). The overlying mechanisms, which principally include monocyte

phagocytosis, induction of natural killer cells andmucosa soon ulcerates, leading to the characteristic
initial symptom of haematobiasis, painful terminal complement activation via the alternative pathways.

Monocyte activation also leads to a cascade of acquiredhaematuria. Eventually, the granulomata heal by fib-
rosis and calcification, appearing as ‘sandy patches’ by immune responses mainly initiated by activation of T-

helper cells. The latter generally occurs in two phases:cystoscopy, and as linear calcifications in plain radio-
grams. Healing may also generate small cystic lesions early Th1- and late Th2-dominated. The scenario is

controlled by a number of monocyte-released interleu-encrypting islands of bladder mucosa (cystitis glandu-
laris) that may be almost totally atrophic (cystitis kins including IL-1, IL-6 and IL-12 [39].

Th1 activation represents a florid phase of the host’scystica). Cicatricial contraction of the healed lesions
often encroaches on the ureteric orifices leading to immune response. Thus, it provides a reaction ampli-

fication loop by enhancing the monocyte activitypartial obstruction, which may lead to upstream con-
sequences including hydronephrosis, ascending infec- through the release of interferon-c (IFN-c). It also

leads to activation of cytotoxic T-cells, eosinophils andtion and stone formation. Abnormalities of tubular
function including salt loss and secondary tubular basophils through several cytokines including Il-2, IL-

13 and others. Th2 cells, on the other hand, tend toacidosis are fairly common, though frequently over-
looked. End-stage renal failure eventually takes place suppress the immune response through the release of

IL-4, IL-5 and IL-10 [40].as the interstitial and periglomerular fibrosis become
sufficiently extensive. B-lymphocytes are also activated in two phases

through the interaction of several cytokines. ThisOne of the notorious complications of urinary schis-
tosomiasis is the development of bladder malignancy. reflects on the antibody profiles associated with para-

sitic infections, characterized by an initial predomin-A causal relationship is established by an experimental
model in the baboon [32] and by clear statistical ance of those with high complement-fixing properties

and late supremacy of blocking, and poor complement-correlation in humans [34]. Unlike the usual histo-
logical types, Schistosoma-associated bladder cancer is affinity immunoglobulins [38]. Of particular impor-

tance in most parasitic infections is IgE, which isa squamous cell carcinoma, shows a distinct male
predominance and is characterized by late and slow necessary for the eosinophil-mediated parasite killing

by a process of antibody-dependent cell-mediated cyto-spreading, usually by local and/or lymphatic permea-
tion [33]. Recent studies have shown oxidative stress- toxicity (ADCC). Although this process is maintained

as long as the parasitic infection persists, its activity isinduced breakage of chromosome 1 in such patients
[34], as well as mutation of the p53 suppressor gene maximal during the initial phase. IgG1 and IgG3 are

also important during the early phase, since they[35], which suggests that impaired physiological
apoptosis may be blamed. interact with complement in catalysing another cellular

mechanism, namely neutrophil-mediated cytotox-
icity(antibody and complement-dependent cytotoxicityEcchinococcosis ‘ACDC’) [38].

Complement activation occurs via both the alternat-The kidney may be the site of hydatid cyst formation
in 2–3% of patients with ecchinococcosis [36 ]. Such ive (innate effect of parasitic toxins) and classical

(immune complex-mediated) pathways [38]. Late com-cysts are often asymptomatic, unless they are located
in critical sites leading to ureteric obstruction or vascu- plement components are involved in the final elimina-

tion of parasitic antigens, as well as in the parasiticidallar stretching.
activity of neutrophils by a complement-dependent
cell-mediated cytotoxicity (CDCC) mechanism.Filariasis Evasive mechanisms in concomitant immunity also
include antigen variability within the same (e.g. tryp-Adult Wuchereria bancrofti worms, inhabiting the

abdominal lymphatic system [37], may impair the renal anosomiasis) or successive (e.g. malaria) generations.
Some parasites tend to blind the host to their ownlymphatic drainage ultimately leading to chyluria. This

rare condition can be diagnosed readily by simple urine antigens by acquisition of host antigens (e.g. blood
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Fig. 6. Simplified diagram showing the principal immune mechanisms involved in parasitic infections. For explanation, see text.

group H substance or HLA antigens) within their clinically irrelevant, being overlooked within the con-
text of the more overt manifestations of the primarytegument (e.g. schistosomiasis) [41]. Late and very late

parasitic antigens have been shown to down-regulate disease. In occasional circumstances, however, patients
may develop a classical nephritic syndrome (e.g. falci-the monocytes (e.g. leishmaniasis) [9]. Some recent

data suggest that antigen excess may also be monocyte parum malaria [52] and trichinosis [48]) and display
overt urinary abnormalities including proteinuria, mic-suppressive (schistosomiasis) [42]. Certain parasitic

antigens tend to induce suppressor T-cell clones (schis- rohaematuria and casturia (e.g. schistosomiasis haema-
tobium [44] and ecchinococcosis [49]) or even thetosomiasis) by as yet poorly understood mechanisms.

The immune-mediated renal manifestations of para- nephrotic syndrome (schistosomiasis haematobium
[53]). In all cases, though, the lesions are self-limited,sitic infections closely reflect the whole scenario of

concomitant immunity. They may be categorized into and almost never progress to ESRD.
three distinct patterns, depending on the interaction
between the florid immune activation dominated by Acute interstitial lesions
Th1 cells on one hand, and the modulated response

The prototype parasite-associated interstitial nephritisdominated by Th2 cells and other parasite’s evasive
is that of Kala-azar. In this infection, caused bymechanisms on the other.
Leishmania donovani, the renal interstitium is heavily
infiltrated with monocytes and lymphocytes, whichAcute glomerular lesions clearly display an acute cell-mediated inflammation
[54]. Many patients remain asymptomatic, apart fromMany parasitic infections lead to acute or subclinical,

self-limited glomerulopathy during the early phase of the constitutional manifestations of the primary
disease. Others may display urinary abnormalitiesflorid immune stimulation. Such glomerular lesions

have been reported with schistosomiasis [43,44], mal- such as proteinuria, lymphocyturia and pyuria.
Occasionally, renal function is impaired even witharia [45], filariasis [46 ], leishmaniasis [47], trichinosis

[48], ecchinococcosis [49], toxoplasmosis [50] and acute oliguric renal failure [55].
Interestingly, the infiltrating monocytes containtrypanosomiasis [51]. With the exception of infection

by certain strains of the former three parasites, glomer- plenty of amastigotes which seem to survive happily
within such potentially lethal cells. This kind of symbi-ular lesions are generally characterized by mesangial

proliferation with little matrix expansion, associated osis animates the concept of concomitant immunity
within the same cell. It is attributed to down-regulationwith mesangial immune complex deposits, which are

composed mainly of IgM, complement and, occasion- of the monocyte function by leishmanial antigens [9],
and is IL-10 mediated [56]. Lymphoid proliferation isally, IgG. Parasitic antigens have also been detected

variably in the mesangial deposits in most of these impaired [57] and natural killer cells are inhibited [58].
It is this immune modulation that checks the progres-infections (Figure 7). Renal involvement is usually
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Fig. 7. Mesangial proliferative glomerulonephritis in S.mansoni infection. Schistosomal gut antigen deposits are shown by immuno-
fluorescence.

Fig. 8. Renal amyloidosis in schistosomiasis. Left: schistosomal granuloma (top), three glomeruli with extensive amyloid deposits (bottom)
and dense interstitial infiltration and fibrosis (H&E stain). Top right: amyloid deposition in the mesangium associated with mild mesangial
cellular proliferation (H&E stain). Bottom right: early amyloid deposits (seen as green birefringence) in the glomerulus with mesangial
proliferation. (Congo Red stain—polarized light).
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sion of Kala-azar interstitial nephropathy any further, aria and Onchocerca volvulus tends to progress in a
variable proportion of patients. In those cases, renaland leads to spontaneous regression in almost all cases

[58, 59]. disease is usually associated with the nephrotic syn-
drome, hypertension and progressive loss of function.Interstitial nephritis has also been described in

experimental infection with Schistosoma mekongi [60]. Glomerular lesions exhibit different patterns, mostly
Little is known about the natural history of this disease characterized by a mesangiocapillary or focal sclerosis
in humans. pattern. In contrast to the simple glomerulopathy seen

in other parasitic glomerulopathies, IgG or IgA tend
Amyloidosis to override the IgM deposits, parasitic antigens become

only rarely detectable, and the deposits extend intoAmyloidosis has been reported in a number of parasitic subendothelial, subepithelial and intramembranousinfections including shistosomiasis [61,62], filariasis locations. These features have suggested to students in[63], leishmaniasis [64] and ecchinococcosis [65]. The the field that pathogenetic mechanisms, other thanrenal lesions vary from a few vascular or glomerular simple deposition of parasitic antigens and immunedeposits seen only when searched for by special stains
complexes, must be involved.[66 ], to frank extensive disease with almost total

replacement of the glomerular architecture [67] (Figure
8). Whenever reported, the amyloid protein detected

Malarial glomerulopathywas of the AA type, and involved other organs such
as liver and spleen [66 ]. Most patients present with This is a disease of children, usually ~5 years of age,
proteinuria, nephrotic syndrome and variable degrees who develop nephrotic syndrome as a consequence of
of renal failure. The lesions do not seem to respond to quartan malarial infection. Renal biopsy (Figure 10)
specific anti-parasitic treatment [67]. shows mesangial expansion with subendothelial

The pathogenesis of parasite-associated amyloidosis immune complex deposits, mostly of IgG3, C3 and
(Figure 9) displays the full scenario of concomitant occasionally malarial antigens. The renal component
immunity. Whereas the immunostimulatory effect of of their illness is progressive, and does not respond to
parasitic antigens increases the hepatocyte synthesis of anti-malarial treatment, corticosteroids or immuno-
sAA protein under the influence of IL-1 and IL-6 suppressive agents.
[68,69], the down-regulated monocytes seem unable to Several studies have addressed the potential factorsclear this protein [70], thereby increasing its circulating that select only a few infected children to develop renalblood level. Serum AA protein adheres to extracelluar disease. Concomitant infection with other agents hasmatrix [71] and subsequently is transformed into the been suggested [73]. HBV, which is highly prevalentfibrillar form through the action of committed mono- in endemic areas, is an eligible candidate [74] supportedcytes in the target tissues [72]. by experimental data in marmosets [75]. Other studies

have produced evidence that autoimmunity may playProgressive glomerulonephritis an important role in the progression of malarial
nephropathy [76,77]. Genetic predisposition has alsoAs an exception to most parasitic nephropathies, glom-

erular disease associated with S.mansoni, quartan mal- been suggested [73].

Fig. 9. Pathogenesis of schistosomal amyloidosis. The monocyte continues to release IL-1 and IL-6 under the influence of schistosomal
antigens. These stimulate the hepatocytes to release AA protein, which has a distinct chemoattractant function. The monocyte is the normal
scavenger of serum AA protein, a function that is impaired in hepatosplenic schistosomiasis. Serum AA protein accumulates and tends to
deposit in tissues.
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Fig. 10. Quartan malarial nephropathy. Left: mesangial proliferation with capillary wall thickening (H&E stain). Right: silver stain showing
the splitting of the basement membrane due to subendothelial deposits.

Fig. 11. Glomeruli belonging to four classes of schistosomal glomerulopathy: top left, simple mesangial proliferation; top right, exudative
glomerulonephritis; bottom left, mesangiocapillary glomerulonephritis (H&E stain); bottom right, focal and segmental glomerulosclerosis.
(Masson trichrome stain).
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Filarial glomerulopathy that such antigens constitute the majority of parasitic
antigen deposits in the affected glomeruli in experi-Clinically insignificant, asymptomatic proteinuria mental animals [97] as well as humans [98].is often seen in many filarial infections worldwide. However, we also noticed that the more advancedYet clinically overt nephrotic syndrome may be lesions display IgA much more frequently than IgMencountered with O.volvulus infection, a type of in the mesangial deposits [96 ]. In patients with hepa-filariasis hyperendemic in the Cameroon [78]. tosplenic schistosomiasis, the level of IgA-containingMesangiocapillary and chronic sclerosing glomerulo- circulating immune complexes was significantly highernephritis are the lesions most often reported. when there was evidence of significant renal diseaseSubendothelial and mesangial immune complexes con- [99]; it was then assumed that impaired hepatic clear-taining IgM, IgG, C3 and Onchocerca antigens were ance of IgA may be a superimposed pathogeneticdetected by immunofluorescence, and mesangial mechanism.electron-dense deposits [79] by electron micros- More recently, we noticed that the serologicalcopy. Similar lesions have also been described occasion- immunoglobulin profile was characterized by the pre-ally in bancroftiasis [80,81] and loasis [82]. dominance of IgA- at the expense of IgM-anti-gliadinAutoimmunity has been blamed as an essential antibodies in patients with schistosomal glomerulopa-pathogenetic mechanism in the development of overt thy, in contrast to those with hepatosplenic schistoso-and progressive disease. Nephrotic syndrome is usually miasis sparing the kidneys [100]. The proportion ofseen in patients who also suffer from polyarthritis and IgA-coated peripheral B-lymphocytes was significantlychorioretinitis, the latter underlying the common term higher in the former cohort of patients [101] (Figure‘river blindness’ used to describe the disease in endemic 12). These data indicate that switching from IgM toareas. Anti-DNA, anti-idiotypic and anti-phospholipid IgA predominance may be a critical feature in theantibodies [83], and autoantibodies against human immunopathogenesis of schistosomal glomerulopathy.homologue antigens 35, 51, 64, 83 and110 kDa and Such switching, which occurs at a pre-transcriptionalcalreticulin [84] have been detected in the sera of such level in the C gene [102], is known to be mediatedpatients. largely by IL-6 and IL-10 [103]. As described earlier,
these cytokines play a major role in the late modulationSchistosomal glomerulopathy of schistosomal granulomata.

It would appear then, that for schistosomal glomeru-Although mild glomerular lesions have been described
in S.mansoni [43], S.hematobium [85] and S.japonicum lopathy to progress into overt renal disease, the glomer-

ulus should receive dual injury. Initial ‘priming’ may[44] infections, only the former has been associated
with progressive glomerular disease ending with ESRD occur as a result of immune complex deposits, similar

to what happens in most other parasitic glomer-[22,23]. Overt renal disease is usually encountered in
adult males, 30–40 years old, who almost invari- ulopathies. At this point, the patient may remain

asymptomatic or develop mild, often asymptomatic,ably have evidence of hepatosplenic schistosomiasis.
Hypertension is seen in 50% of patients [85]. The renal proteinuria. When ‘switching’ takes place, IgA deposits

infiltrate the lesions in their own right, irrespective ofhistological changes have been categorized under five
classes (Figure 11) [86 ]. Class 1 lesions are seen more the initial aetiology (Figure 13). This scenario is, in

essence, very similar to the currently prevailing con-often in early, asymptomatic lesions and may be
reversed with anti-helminthic treatment. Class 2 lesions cepts in primary IgA nephropathy.

Autoimmunity also seems to play a pathogeneticare characteristic of patients who have concomit-
ant Schistosoma and Salmonella infections, a fairly role in schistosomal glomerulopathy, as suggested by

many serological abnormalities including false-positivecommon association described in Egypt [87] and Brazil
[88], and associated with acute yet reversible nephrotic Wassermann reaction [85], rheumatoid factor [89],

anti-DNA antibodies [104], seropositivity for anti-syndrome among Egyptians [89]. Classes 3 and 4 are
those reported most often in patients with progressive idiotypic and anticardiolipin antibodies [83], and

others. It is interesting that IgA ‘switching’ can alsodisease. Several studies have documented the ineffect-
iveness of treatment at this stage of disease evolution be demonstrated in the autoantibody profile in patients

with schistosomal glomerulopathy [100].[90,91]. Class 5 is renal amyloidosis, already alluded
to, earlier on in this review.

There is a lot of experimental and clinical evidence
Conclusionthat progression into classes 3 and 4 schistosomal

glomerulopathy requires a fibrotic liver [92–95]. In
one of our earlier studies, it was shown that proteinuria The foregoing has shown that glomerular immune

complex deposition in a variety of parasitic diseasesand mesangial expansion correlate with the impairment
of hepatic macrophage function, as measured by iso- leads to mild and self-limited disease, reflecting the

critical balance of concomitant immunity. Some othertopically labelled sulfur colloid [96 ]. It was assumed
initially that such functional hepatic impairment would pathogenetic mechanisms have to be superimposed in

the few parasitic glomerulopathies that tend to pro-allow adult worm schistosomal gut antigens to escape
in higher concentrations from the portal blood into gress. These may include infection with certain viruses

(e.g. in malarial nephropathy) or bacteria (e.g. inthe systemic circulation. Indeed, it has been shown
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Fig. 12. IgA switching in patients with schistosomal glomerulopathy. Left: anti-gliadin antibodies. Right: IgA/IgM-bearing peripheral
blood mononuclear cells.

Fig. 13. Probable pathogenetic mechanisms involved in the pathogenesis of schistosomal glomerulopathy.
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